POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Power plant operation in power s	system		
Course			
Field of study		Year/Semester	
Electrical Engineering	2/4		
Area of study (specialization)	Profile of study		
Electric Power Systems	general academic		
Level of study	Course offered in		
Second-cycle studies	Polish		
Form of study		Requirements	
part-time		compulsory	
Number of hours			
Lecture	Laboratory classes	Other (e.g. online)	
10	10	0	
Tutorials	Projects/seminars		
0	0		
Number of credit points 2			
Lecturers			
Responsible for the course/lecturer: dr inż. Robert Wróblewski		Responsible for the course/lecturer:	
email: robert.wróblewski@put.p	oznan.pl		
tel. 61 665 2523			
Faculty of Environmental Enginee Energy	ering and		

ul. Piotrowo 3A 60-965 Poznań

Prerequisites

The student has basic knowledge of energy technologies and machines used in professional power engineering, mechanics, fluid mechanics, basics of metrology. Knows the basic principles of energy installations operation. Understands the principles of operation of basic machine parts and knows the construction of basic conventional energy devices. Is aware of the need to expand their competences, readiness to cooperate within a team

Course objective

Acquaintance with the principles of operation of power plants and their participation in covering variable loads of the power system

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

1. Student has general knowledge on how to optimize the work of generating sources in the power system

2. The student can thoroughly present the principles of operation of generating sources in the electrical system in various states of his work

Skills

1. Student is able to apply the basic principles of correct operation of generating sources in the power system

2. The student is able to analyze complex power systems using appropriate tools and methods of analysis

3. The student knows how to obtain information from literature, databases, integrate information, interpret them and formulate conclusions

Social competences

1. Student is able to think and act in a creative and entrepreneurial way

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture:

assessment of knowledge and skills demonstrated for problem-type written tests,

Laboratory classes:

ongoing assessment of knowledge and skills related to the implementation of the exercise task, evaluation of the report of the exercise,

Programme content

Lecture:

The role of various types of power plants in the operation of the power system. Power plant energy characteristics. Power plant operation in the power system - economical load distribution, selection of a set of generating units. Power plant availability. Power plant reliability structures. Conditions for connecting generating units to the power grid. The content of the laboratory exercises is consistent with the topic of the lecture and includes the use of power plants in various states of the power system.

Laboratory classes:

power plant operation in various operating states - analysis of obtained results

Teaching methods

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Lecture: multimedia presentation, illustrated with examples on the board

Laboratory classes: classes on the 200MW block simulator

Bibliography

Basic

- 1. R.Janiczek, Eksploatacja elektrowni parowych, WNT W-wa 1990
- 2. Gładyś H., Matla R.: Praca elektrowni w systemie elektroenergetycznym. WNT. W-wa 1995

Additional

1. D.Laudyn, M.Pawlik, F.Strzelczyk, Elektrownie, WNT W-wa 2000

2. M.Pawlik, J.Skierski, Układy i urzadzenia potrzeb własnych. WNT W-wa 1986

Breakdown of average student's workload

	Hours	ECTS
Total workload	60	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for laboratory	30	1,0
classes, preparation for tests/exam) ¹		

¹ delete or add other activities as appropriate